Comparative transcriptomics of Entelegyne spiders (Araneae, Entelegynae), with emphasis on molecular evolution of orphan genes

نویسندگان

  • David E Carlson
  • Marshal Hedin
چکیده

Next-generation sequencing technology is rapidly transforming the landscape of evolutionary biology, and has become a cost-effective and efficient means of collecting exome information for non-model organisms. Due to their taxonomic diversity, production of interesting venom and silk proteins, and the relative scarcity of existing genomic resources, spiders in particular are excellent targets for next-generation sequencing (NGS) methods. In this study, the transcriptomes of six entelegyne spider species from three genera (Cicurina travisae, C. vibora, Habronattus signatus, H. ustulatus, Nesticus bishopi, and N. cooperi) were sequenced and de novo assembled. Each assembly was assessed for quality and completeness and functionally annotated using gene ontology information. Approximately 100 transcripts with evidence of homology to venom proteins were discovered. After identifying more than 3,000 putatively orthologous genes across all six taxa, we used comparative analyses to identify 24 instances of positively selected genes. In addition, between ~ 550 and 1,100 unique orphan genes were found in each genus. These unique, uncharacterized genes exhibited elevated rates of amino acid substitution, potentially consistent with lineage-specific adaptive evolution. The data generated for this study represent a valuable resource for future phylogenetic and molecular evolutionary research, and our results provide new insight into the forces driving genome evolution in taxa that span the root of entelegyne spider phylogeny.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary transformation from muscular to hydraulic movements in spider (Arachnida, Araneae) genitalia: a study based on histological serial sections.

The male genitalia of 107 spider species representing 73 families were serially sectioned and studied with an emphasis on muscles moving the genital bulb. As a rule, most non-Entelegynae have two bulbal muscles, most Entelegyne have none, but many exceptions occur. Variation also occurs with regard to origin and attachment of bulbal muscles. There appears to be a trend towards a shift of the or...

متن کامل

Spider phylogenomics: untangling the Spider Tree of Life

Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual se...

متن کامل

Taxonomic revision of the spider family Penestomidae (Araneae, Entelegynae)

..............................................................................................................................................................................

متن کامل

Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae).

Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery of the male decades later brought surprises, especially in the morphology of the male pedipalp, which features (among other things) a retrolateral tibial apophysis (RTA). The presence of an RTA is synapomorphic for a large clade of spiders exclusive of Eresidae. A molecular data matrix based ...

متن کامل

Spinning Gland Transcriptomics from Two Main Clades of Spiders (Order: Araneae) - Insights on Their Molecular, Anatomical and Behavioral Evolution

Characterized by distinctive evolutionary adaptations, spiders provide a comprehensive system for evolutionary and developmental studies of anatomical organs, including silk and venom production. Here we performed cDNA sequencing using massively parallel sequencers (454 GS-FLX Titanium) to generate ∼80,000 reads from the spinning gland of Actinopus spp. (infraorder: Mygalomorphae) and Gasteraca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017